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There is a growing interest in investigating transport and electrochemical phenomena in synthetic 
membrane nanopores because of the possibility of mimicking selective ion transport found in protein 
channels in cell membranes of living systems and also towards development of single molecule detection 
systems. Several experimental [1, 3, 4] approaches such as the track etch method and the ion beam 
method have been used with increasing success in recent years to characterize the ionic transport through 
nanopores of varying diameters.  

However, fundamental questions regarding the effects of confinement on diffusion and mobility 
of ions need to be resolved for better design of these nanopore based devices and to propose novel sensing 
mechanisms based on chemical functionalization [2]. The traditional Poisson Nernst Planck (PNP) 
continuum theory typically used in the analysis of electrochemical phenomena in micro-fluidic devices 
cannot take into account the effects caused by the finite size of the ions and water and the water 
accessible volume of the nanopore. This requires atomic scale simulations where finite size of ions and 
water is explicitly treated. However, order of the time scales and the length scales possible in atomistic 
molecular dynamics (MD) simulations is far less than realistic design calculations. Further, it is known 
that in small diameter nanopores (~ 2nm and less) the wall partial charges and the polarization effects can 
influence the transport coefficients. These can be computed from Density functional theory (DFT) or by 
semiempirical methods to solve the Schrödinger equation.  Therefore,  a hierarchical multiscale approach  
is employed that takes into account the quantum effects, by first calculating the atomic partial charges 
using DFT, and then using these as inputs for the MD simulations to calculate the diffusion coefficient 
and mobility, and finally using those in the PNP equations to calculate the IV characteristics. 

We first performed two level multiscale simulations combining the continuum Poisson Nernst Planck 
theory and the Molecular dynamics simulations (Figure 2) to obtain Current-Voltage characteristics of 
nanopores in a silicon dioxide membrane and to investigate the effects of the complex phenomena of 
conductivity and self diffusion of ions due to the confinement in nanopores. Statistical analysis from 
molecular dynamics simulations were used to obtain mobility and diffusion coefficient in SiO2 nanopores 
5nm in length and diameters of 3 nm, 2nm and 1.2 nm in 1M KCl and NaCl solutions. The data from 
these simulations showed that the mobility and diffusion coefficient decreases with decrease in diameter 
and is significantly different from the bulk especially for diameters less than 2 nm.  The transport 
coefficients obtained were used in a continuum based Poisson-Nernst-Planck solver in a multiscale 
framework to obtain the I-V curves (Figure 3). Figure 4 demonstrates the partial charges obtained using 
DFT and semiempirical AM1, which closely matches the data for silica clusters in literature [6]. 
Preliminary results indicate that the presence of partial charges on the pore walls alter the transport 
coefficient because the counter ions stick to the walls for pores of small diameters. 
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Figure 1: Multiscale Simulation Hierarchy. Partial 
charges of pore wall atoms obtained from DFT/AM1 
are fed into the MD which generates mobility and 
diffusion coefficients needed for the PNP equation. 
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and the semi-empirical AM1 domains with the silicon 
dioxide wall, water and ions. 
 

 
 
 
 
 
 
 

ure 3: I-V curves obtained by a 2 level u
methodology: solving PNP for a 2nm diameter 
nanopore using bulk diffusion coefficient and bulk 
ionic mobility, and by using the diffusion coefficient 
and ionic mobility obtained from MD simulations.  
 
 
 
 
 
 

CHARGE 
Silicon 1.71e 1.61e   1.509e
Oxygen -0.76e -0.93e -0.844e
Hydrogen 0.341e 0.45e   0.466e
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igure 5: I-V curves obtained by a 3 level multiscale 

re 4: Partia charge putatio for the 
silanol atoms in the silicon dioxide membrane.  
 

 
F
methodology:  solving PNP for a 3 nm diameter 
nanopore using the diffusion coefficient and ionic 
mobility obtained from the MD simulations with and 
without surface charge (which is computed from DFT 
calculations).  
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