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We report on a computational approach based on the self-consistent solution of the
steady-state Boltzmann transport equation (BTE) coupled with the Poisson equation for the study
of inhomogeneous transport in semiconductor quantum dots (QDs). The nonlinear, coupled
Poisson-Boltzmann (PB) system is solved numerically using finite difference methods.
Preliminary studies of high-field and high-temperature transport characteristics of sample QDs
show a build-up of strong fields in the QD region, charge redistribution due to the applied and
built-in field and interesting fine structure in the high-energy tail of the electron distribution
function in the QD region.

The BTE is a complicated integro-differential equation for the electron distribution
function which in principle needs to be solved in seven dimensions, corresponding to time,
position and momentum space. Most attempts to date to solve the BTE have been primarily
based on Monte Carlo methods for the solution of the BTE or hydrodynamic device models
based on moments of the BTE. Recently, however, there have been a few attempts to solve the
BTE using direct methods. 

 In our treatment we discretize the rescaled BTE in the two-dimensional phase space (one
dimension corresponding to position and one to velocity), using a first-order upwind method.
The corresponding system of equations is then solved using a successive overrelaxation method
(SOR), which updates the solution iteratively in the 2-dimensional phase space until convergence
is reached. From the calculated electron distribution function, the electron density is calculated
and used as an input to the Poisson equation which in turn is solved using finite differencing and
SOR. The calculated inhomogeneous electric field is then finally used as input in the BTE and
the whole process is repeated until convergence is reached. The boundary conditions for the
coupled PB system of equations are: i) For the Poisson solver, fixed potential at the boundaries.
ii) For the BTE solver, displaced Maxwell-Boltzmann distributions, using the calculated value of
the electric field at the boundaries, in space.

A sample result of the solution of the PB system of equations, using the relaxation-time
approximation, is shown in figure 1, where, the potential energy profile, electric field, electron
density and electron distribution function at selected points in position are shown for an N+N-

N+N-N+ structure, calculated at the temperature T=300 K and applied bias voltage Vb=0.5 V (see
figure caption for the rest of the parameters used in the calculation). Several immediate
observations can be made from the presented results: As expected, the potential drop occurs
mainly over the active portion of the device, giving rise to large and sharp variations in the
electric field, as seen in Fig. 1(a). From the electron density shown in Fig. 1(b) it is further seen
that charge redistribution occurs due to the applied and built-in field, giving rise to an
accumulation of charge near the injecting contact. Most importantly, the electron distribution
function [Fig. 1(c)], shown for the points in space depicted in Fig. 1(a), deviates significantly
from a drifted-Maxwellian distribution, displaying a complex structure in the high-energy tail of
the distribution function. These features accentuate the inhomogeneous and non-equilibrium
nature of the transport through these type of systems. 
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meters in the calculation are: The doping densities N+=1023 m-3, N-=1019 m-3,
 m*=0.067m0, the scattering time τ=2.5⋅10-13 s. The central N-N+N- region has
0/200/200 nm, the contact N+ regions are 1 µm long.


