
Wigner-Function Based Simulation of Classic and Ballistic Transport

in Scaled DG-MOSFETs Using the Monte Carlo Method

A. Gehring and H. Kosina

Institute for Microelectronics, TU Vienna, Gußhausstraße 27–29, A-1040 Wien, Austria
gehring@iue.tuwien.ac.at

Double-gate (DG) MOS transistor structures have been proposed to boost the performance of scaled-down
logic devices and to overcome some of the most severe problems encountered in bulk MOS field-effect tran-
sistors [1]. However, with channel lengths below 25 nm, the question of the importance of quantum effects
in the lateral direction, such as source-to-drain tunneling, arises. Frequently, ballistic transport is assumed
which allows the device to be simulated using pure quantum-mechanical approaches [2–4]. However, with
carrier mean free paths in the range of several nanometers, scattering-limited transport may still be
dominant which can be assessed using the Monte Carlo method by accounting for quantum-correction
methods [5, 6]. An approach accounting for both, quantum interference phenomena and scattering pro-
cesses, is based on the Wigner equation augmented by the Boltzmann collision operator,
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This equation can be solved using the Monte Carlo method [7, 8]. We report on the enhancement of the
Wigner Monte Carlo simulator described in [8] for the simulation of silicon-based devices. The algorithm
for annihilation of numerical particles now takes into account the multi-valley band structure of silicon. As
test devices we use double-gate MOSFETs with gate lengths of 60 nm, 25 nm, and 10 nm. For simplicity,
metal gates with midgap work function have been assumed, and a silicon dioxide thickness of 0.75 nm
without wave function penetration was used. A source/drain doping of 5× 1019 cm−3 with abrupt doping
profile and a channel doping of 1 × 1015 cm−3 was chosen, as shown for the 25 nm device in Fig. 1.
Transport has been calculated non-selfconsistently in the first subband calculated by lateral quantization
(ml=0.91 m0), based on a drift-diffusion simulation with Minimos-NT. Fig. 2 shows the conduction band
edge and the respective subband along the channel. Fig. 3 shows the Wigner generation rate along the
channel for a drain bias of 0.1 V and 0.8 V in a 60 nm gate length device. The mean electron energy is
shown in Fig. 4, and the corresponding carrier concentrations of a 15 nm and 10 nm gate length device
are depicted in Fig. 5 for a bias of 0.1 V and 0.8 V, respectively. The output characteristics of the 25 nm
device shown in Fig. 6 indicates that at this gate length, devices are still dominated by scattering and
the assumption of coherent transport overestimates the current density at least by a factor of two.
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Figure 1: The double-gate MOS structure
considered for the simulations.
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Figure 2: Conduction band edge and first
lateral (ml=0.91m0) and transversal
(mt=0.19m0) subband.
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Figure 3: The Wigner generation rate in the 60 nm
device for different drain bias.
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Figure 4: The mean particle energy in the 60 nm
device for different drain bias.
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Figure 5: The carrier concentrations in the 15 nm
(top) and 15 nm (bottom) device at dif-
ferent drain voltages.
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Figure 6: Output characteristics of the 25 nm de-
vice using classical, coherent Wigner,
and non-coherent Wigner Monte Carlo.
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