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For engineering-oriented simulations of quantum confinement effects, density-gradient (DG) 
theory has come into wide use including in multi-dimensions [1].  It is therefore somewhat curi-
ous that the DG description of tunneling [2] has not been similarly applied to practical device 
simulation. The two most important explanations would seem to be (i) questions of principle and 
(ii) that the existing DG theory is restricted to one-dimensional tunneling for which quantum me-
chanics (e.g., NEGF) often provides a realistic alternative.  In the present work our primary focus 
is on how tunneling problems can be treated in multi-dimensions in DG theory.   
 

To understand the application of DG theory to elastic tunneling in multi-dimensions it is im-
portant to recognize that the relevant equations are better viewed not as a generalization of diffu-
sion-drift theory but as a generalization of ballistic transport theory, i.e., with finite inertia, infi-
nite mobility and zero generation-recombination.  The key modification is to include the DG 
equation of state [2].  To illustrate the approach we consider tunneling across an MIM diode 
whose electrodes are of arbitrary shape. As described in Ref. 2, the lack of scattering requires 
that the flow injected from the left electrode be treated separately from the flow injected from the 
right.  Because the electrodes are metals and are isothermal it is reasonable to assume that the 
tunneling gases are isentropic, isoenergetic and irrotational.  Space charge effects are included, 
however, for simplicity the electrodes are considered to be electrostatically ideal [3].  Under 
these conditions, the governing equations for the forward-tunneling carriers in steady-state are:   
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where n and u are the forward and backward tunneling electron density, respectively, !n is the 
velocity potential and !n

DG is the total enthalpy.  With appropriate boundary condition appended, 
these equations and similar ones for the backward-tunneling gas can be solved and the tunneling 
current determined.  As an example, in Fig. 1 we model a 1-D MIM structure and find good 
agreement between DG simulation and a well-known approximate formula of Simmons [4].   
 

To solve the DG tunneling equations in multi-dimensions numerical methods are required.  
To this end, we have implemented the equations in the code PROPHET from Mixed Technology 
Associates, LLC.  We consider ridge and STM-like tip electrode geometries with ultra-small 
curvature and separated by a dielectric from planar electrodes (Fig. 2).  The ridges (2D) and tips 
(3D) are assumed Lorentzian in shape as defined in Fig. 2.  Figures 3-5 show simulation results 
for the 2D ridge geometry with d = 1.5nm and a chemical potential barrier height of 2eV.  Note 
the existence of an asymmetry in the I-V characteristics (Fig. 3) that originates in the geometrical 
asymmetry as discussed by Lucas [5].  In Fig. 6 we compare I-Vs for a 2-D ridge and a 3-D tip 
each having the same parameters; a stronger geometrical asymmetry is evident in the 3D case.    
 
 Acknowledgement: MGA thanks ONR for funding support. 

 

1. For example, the DG treatment of carrier confinement is 
implemented in the commercial simulators available 
from Synopsys, Silvaco and ISE. 

2. M.G. Ancona, Phys. Rev. B42, 1222 (1990). 
3. M.G. Ancona, Phys. Rev. B46, 4874 (1992). 
4. J.G. Simmons, J. Appl. Phys. 34, 1793 (1963). 
5. A.A. Lucas et al, Surf. Sci. 269/270, 74 (1992). 



A full journal publication of this work will be published in the Journal of Computational Electronics. 

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1

C
u

rr
e

n
t 

D
e

n
s
it
y
 (

A
/c

m
2
)

Voltage (V)

Simmons

DG theory

d = 1.5nm

! = 2eV

 
Fig. 1.  Comparison of DG simulation and for-
mula of Simmons [4] for 1D MIM tunneling 
with space charge neglected. 
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Fig. 4.  DG profiles of the electron densities 
and barrier along the centerline with a = 1nm.   
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Fig. 2.  Schematic of an MIM diode 
with a ridge or tip electrode geometry.   

 

  
 
Fig. 5.  Ridge geometry, concentration (contour lines: 1010-1022 
cm-3), and current density (color coded) for electrons tunneling 
from the 2D ridge to the plane with V = -1.5V and (left) a = 1.5nm, 
and (right) a = 5nm.  
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Fig. 3. 2D simulation of the tunneling current 
for ridge electrodes of varying widths (a) and 
normalized to the planar case. 
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Fig. 6. Comparison of  simulated tunneling cur-
rents from a 3D tip electrode with a 2D ridge 
electrode. 


