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ØThe Magnetic Quantum Cellular 

Automata Concept 

ØPower Dissipation in Nanoscale 

Magnets

ØPower Gain in Nanoscale Magnets
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Driver Cell Driven Cell

Main idea:
Interconnection by 
stray fields

Coulomb-repulsion

By changing the geometry one 
can perform logic functions as 
well

The Quantum Cellular The Quantum Cellular 
Automata Automata 
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Bistable switch:

‘1’ ‘0’

Due to shape anisotropy  there 
is a typically few hundred 
room-temperature kT energy 
barrier between the two 
stationary states.

Magnetic Magnetic NanopillarsNanopillars
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Interaction Between Two Interaction Between Two 
Nanoscale MagnetsNanoscale Magnets
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Signal flow

The Nanomagnet WireThe Nanomagnet Wire
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Clocking results in predictable 
switching dynamics



Input dot: retains its magnetization

0.5µm

Micromagnetic Simulation Micromagnetic Simulation 
of the Nanomagnet Wireof the Nanomagnet Wire

pumpH
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Experimental Progress Experimental Progress 

Fabrication and pictures by A. Imre

Investigations of permalloy nanomagnets (thermally 
evaporated and patterned by electron beam lithography) 
confirm the simulation results
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Approaches to Magnetic Approaches to Magnetic 
Logic DevicesLogic Devices

Soliton – propagation
in coupled  dots

(Cowburn, Science, 2000) (Cowburn, Science, 2002)

Manipulation of 
domain wall 
propagation

Coupling between 
magnetic vortices, 
domain walls

Joint ferro- and 
antiferromagnetic
coupling

(Parish and Forshaw, 2003)

(Our group)

Pictures and fabrication by A. Imre



Fundamental questions from the system perspective:

••What is the amount of dissipated power?What is the amount of dissipated power?

••Do Do nanomagnetsnanomagnets show power gain?show power gain?

Input
currents

Output
sensorsDot Array

Small building blocks

Complex systems

?

Magnetic Signal Propagation

LargerLarger--Scale SystemsScale Systems



Model of Dissipation in Model of Dissipation in 
MagnetsMagnets
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Magnetic moments (spins) of the ferromagnetic material 
perform a damped precession motion around the 
effective field.

The Landau-Lifschitz Equation (fundamental equation of 
domain theory) gives quantitative description of this 
motion:



Switching of a Large MagnetSwitching of a Large Magnet
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Simulation of a 50 nm by 20 nm permalloy strip 

Dissipation in a DomainDissipation in a Domain--wall wall 
ConductorConductor 7

diss 10  WP −≈



Minimizing the DissipationMinimizing the Dissipation

Rapidly moving domain walls are 
the main source of dissipation in 
magnetic materials

ØMake the magnets sufficiently 
small (submicron size magnets 
has no internal domain walls)

ØSwitch them slowly (use 
adiabatic pumping)

Dissipation is strongest around 
domain walls

Small magnets have no internal 
domain walls



Non Non –– Adiabatic Switching of Adiabatic Switching of 
Small MagnetsSmall Magnets
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Energy landscape of a pillar-shaped 
single–domain nanomagnet

0zH =

 smallzH

 at switchingzH

E
ne

rg
y 

ba
rr

ie
r 

at
 z

er
o 

fie
ld

E
ne

rg
y 

w
as

te
d 

du
rin

g 
sw

itc
hi

ng

System state



MicromagneticMicromagnetic Simulation of the Simulation of the 
NonNon--Adiabatic Switching ProcessAdiabatic Switching Process

Micromagnetic simulation
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Adiabatic SwitchingAdiabatic Switching
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By adiabatic clocking, the system can be switched with 
almost no dissipation, but at the expense of slower 
operation. 
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Dynamic simulation
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Simulation of Adiabatic Simulation of Adiabatic 
SwitchingSwitching



Switching Speed vs. Dissipated PowerSwitching Speed vs. Dissipated Power

Adiabatically switched nanomagnets can dissipate at least two orders of magnitude 
less energy than the height of the potential barrier separating their steady-states
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The Lowest Limit  of Dissipation in The Lowest Limit  of Dissipation in 
Magnetic QCA Magnetic QCA 

Deviations from the ideal single-domain behavior -
à abrupt domain wall switches will always cause 
dissipation (few kT)

Coupling between dots should be stronger than
few kT à dot switching cannot be arbitrarily slow 
à few kT dissipation unavoidable

The minimal dissipation of nanomagnetic logic 
devices is around a few kT per switching. 



External field

Schematic:

Micromagnetic 
simulation:

Single-domain 
model

Power Gain of Adiabatically Power Gain of Adiabatically 
Pumped Pumped NanomagnetsNanomagnets
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Energy of the magnetic signal 
increases  as the soliton
propagates along the wire

Detailed View of the Switching Detailed View of the Switching 
ProcessProcess
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in aci i≡

pump dci i≡

φ
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Low inductance

High inductance

pump dci i≡
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This is a circuit with a variable 
inductance.  
Does it have applications? 

Inductance control

A Nanomagnet Driven by A Nanomagnet Driven by 
Current LoopsCurrent Loops



Magnetic AmplifiersMagnetic Amplifiers
Low impedance circuit

1.Ettinger, G. M.: “Magnetic Amplifiers”, Wiley, New York, 1957

High impedance circuit

Nonlinearity of the hysteresis curve à Tunable inductances à Power gain



Magnetic ComputersMagnetic Computers
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A magnetic shift register
from Gschwind: Design of Digital Computers, 1967

This three-coil device behaves like a common-base transistor amplifier



The origin of power gain in field-coupled nanomagnets can be understood 
on the same basis as the operation of magnetic parametric amplifiers
à Nanoelectronic circuit design

Coupled Coupled NanomagnetsNanomagnets as as 
CircuitsCircuits

in
zHini

yH

pumpi

out
zH

outi

Right neighbor
(Equivalent circuit)

Left neighbor
(Equivalent circuit)



Magnetic fieldMagnetic field--coupling is an idea coupling is an idea 
worth pursuing…worth pursuing…

Low dissipation, robust operation, high Low dissipation, robust operation, high 
integration density and  reasonably integration density and  reasonably 
high speedhigh speed

As they are active devices, there is no As they are active devices, there is no 
intrinsic limit to their scalabilityintrinsic limit to their scalability

FieldField--coupling is functionally equivalent coupling is functionally equivalent 
to electrically to electrically interconectedinterconected device device 
architecturesarchitectures

1cm

1.0µm

ConclusionsConclusions
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