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Intfroduction

Velocity Overshoot (VO) is an effect observed in
very short channel devices.

« Experimentally observed as an increase in
current drive and transconductance.

 Transit time is reduced due to lower L, and also
because v>v,.

* Could VO improve the performance of very short
channel devices?
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Study of VO effect

* Apply low E,,, for t < {, and high E,, at {=t,.
Electric field step — Electron velocity overshoot
foratime t <t (energy relaxation time).

* The electron gas is not in equilibrium with the
lattice — Insufficient phonon scattering events.

 Electrons are accelerated v > v, until the
electron energy reaches its new steady-state.

IWCE-10 Purdue, October 24-27, 2004 4



Contfinuous improvement of
device performance

New device

ctructures ——  Double Gate SOI

« Control of SCEs by device geometry compared to a bulk
MOSFET where SCEs are controlled by doping. Thin Tg;
leads to a strong coupling of the gate potential with the
channel potential.

* Reduction of parasitic capacitances.

* Increased radiation tolerance and increased mobility
(volume inversion).
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Goal of the work

Confinement of electrons in a very thin silicon film
produces important differences compared with bulk
MOSFETs:

1. Subband modulation
2. Increase in the phonon scattering rate

Try to study the influence of these phenomena
on the VO of the electrons and its dependence
with technological parameters (75, N,)
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Simulation Details

» Structure considered: DGSOI transistor with N* poly gates,
undoped silicon layer 1.5nm < Tg; < 20nm, T, = 2nm

T OX
« Self consistent solution of Poisson & Schrédinger
equations.

* Nonparabolic band model a=0.5eV-"-
* One-electron Monte Carlo simulator.

 Phonon, surface-roughness and Coulomb scattering
mechanisms were included.
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Evolution of the energy and velocity of a distribution of electrons after the sudden
application of a high longitudinal field:
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Evolution of the velocity overshoot peak with the silicon thickness (1.5nm < T
< 20nm ) evaluated for different values of &V,
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Two opposite effects influence on the electron transport
iIn DGSOI for very thin silicon thickness:

1.- Subband modulation produces a decrease in the
conduction effective mass.

2.- Greater confinement produces an increase in the
phonon scattering rate.

Subband modulation effects favor electron transport
while the phonon scattering increase impedes it.

IWCE-10 Purdue, October 24-27, 2004 11



Electron mobility in a DGSOI transistor as
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T, > 20nm
Two separate inversion layers

S5nm < 7T, <20nm

Interaction between inversion layers
Subband structure and wavefunctions
strongly modified

T, <5nm
Strong increase in the phonon scattering rate

Taking into account mobility considerations T, < 5nm should not be used
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Conclusions

 Behavior of p, for Tg; < 5nm is mainly controlled by the phonon
scattering rate

* The VOP for Tg; < 5nm is controlled by the average conduction
effective mass

Could VO improve the D6SOT performance?
Calculation of I-V curves — Ensemble quantum Monte Carlo simulator
which includes all the effects previously mentioned.
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