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Motivation and Approach

• AlGaN/GaN HEMT is the attractive candidate for high-
temperature, high-power and high-frequency device.
– wide band gap, high saturation velocity
– high electron density by spontaneous and piezoelectric polarization 

effect

• Here the full-band Cellular Monte Carlo (CMC) approach 
is applied to HEMT modeling.

• The effect of the quantum corrections is examined based 
on the effective potential method.
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Full-band transport model

Transport is based on the full 
electronic and lattice dynamical 
properties of Wurtzite GaN:

• Full-band structure
• Full Phonon dispersion
• Anisotropic deformation potential 

scattering (Rigid pseudo-ion 
Model)

• Anisotropic polar optical phonon 
scattering (LO- and TO-like mode 
phonons)

• Crystal dislocation scattering
• Ionized impurity scattering
• Piezoelectric scattering
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AlGaN/GaN hetero structure
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Fixed polarization charge is induced 
at the AlGaN/GaN interface
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PSP : Spontaneous polarization
PPE : Piezoelectric polarization (strain)
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Effective potential approach

Quantization energy
Charge set-back

Effective potential 
approximation

Classical potential
(from 

Poisson’s equation)

Smoothed Effective Potential

Effective potential takes into 
account the natural non-zero size 
of an electron wave packet in the 
quantized system.

This effective potential is related 
to the self-consistent Hartree
potential obtained from Poisson’s 
equation.
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a0 : Gaussian smoothing parameter

depends on
Temperature
Concentration
Confining potential
Other interactions

D.K. Ferry, Superlattices and Microstructures 28, 419 (2000)
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Schrödinger-Poisson calculation

Calculated AlGaN/GaN structure

AlxGa1-xN Doped

GaN

15 nm

100 nm

Gate

AlxGa1-xN Spacer 5 nm

Modulation doping : 1018 cm-3

Unintentional doping : 1017 cm-3

(for AlGaN and GaN)
Al content x : 0.2 ∼ 0.4

Schrödinger-Poisson (S-P) calculation
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Al0.2Ga0.8N/GaN

F. Sacconi et al., IEEE Trans. Electron Devices 48, 450 (2001)
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Effective potential calculation

Quantum correction (QC) 
with effective potential

Self-consistent calculation :

The final effective potential shifts due to the polarization charge

• Solve Poisson equation with 
classical electron distribution

• Quantum correction with the 
effective potential method

• Calculate the electron density 
with the new potential (Fermi-
Dirac statistics)

• Solve the Poisson equation
Repeat until
convergence

Al0.2Ga0.8N/GaN
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Electron distribution
Electron distribution for S-P, classical and quantum correction

Quantum correction (initial) Quantum correction (self-consistent)

a0 (Å) : Gaussian smoothing parameter

(Al0.2Ga0.8N/GaN)
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Electron sheet density
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Ns for Si MOSFET Ns for AlGaN/GaN HEMT

MOSFET with 6nm gate oxide.
Substrate doping is 1017 and 1018 cm-3. MOSFET data:

I. Knezevic et al., IEEE Trans. Electron Devices 49, 
1019 (2002)

Al0.2Ga0.8N/GaN
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Comparison of electron distribution with S-P

Al0.2Ga0.8N/GaN Al0.4Ga0.6N/GaN
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Gaussian smoothing parameter (a0) fitting
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HEMT device simulation
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Simulated HEMT device

Electron distribution under the gate

Classical

Quantum
correction

a0=6.4 Å

UID density : 1017 cm-3

∆Ec = 0.33 eV
Schottky barrier φB=1.2eV
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Classical Effective potential

VG=0V
VDS=6V
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ID_VDS, ID_VG
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Conclusion

• The effect of quantum corrections to the classical charge distribution 
at the AlGaN/GaN interface are examined. The self-consistent 
effective potential method gives good agreement with S-P solution.

• The best fit Gaussian parameters are obtained for different Al 
contents and gate biases.

• The effective potential method is coupled with a full-band CMC 
simulator for a GaN/AlGaN HEMT. 

• The charge set-back from the interface is clearly observed.  
However, the overall current of the device is close to the classical 
solution due to the dominance of polarization charge. 


