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Q Introduction
= MOSFETs downscaling: statistical fluctuations of doping impurity
positions

1 3D Quantum simulation of point defects in nanowire transistors
= Nonequilibrium Green Function formalism: Mode-Space approach
= Treatment of point defects

A Results: influence of the impurity location and type
* Energy subbands
* Transverse modes
= Current characteristics

a Conclusions and perspectives
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Dimensions of nanowire MOSFETSs
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v Source and drain region: continuous doping of 1020 cm-3.
v' Dimensions: L=8 nm, W,=3 nm, and T¢;=3 nm, T,,=1 nm.
v' Channel region: discrete doping of 101° cm-3, with 1 impurity on average.

p Effect of the impurity type and location.
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Nonequilibrium Green' s function
formalism

Point Defect Treatment




The 3D Mode Space Approach*

¢ The 3D Schradinger = 2D (confinement) + 1D (transport) <« (DD
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ith eigenstate of the nt" atomic plan

* Hypothesis:y ,;is constant along the transport axis.
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The 3D Mode Space Approach

+ Electron distribution along subbands (valley (010)): + For each subband i
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+ Simplified tight-binding approach: cubic lattice with a,, a,, a,.

- 1 orbital/atom: \ l, m, n> : position z=I" a,, y=m’ a,, X=n" a,.

- Interactions between first neighbors.
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Point defect description
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Impurity

+ Point Defect = On-site Potential + Coulomb Tall

e \

Treated as a localized variation Treated as a macroscopic variation
= Chemical structure
P Included in the self-consistent mode-
space approach without coupling the
electron subbands

P Included in the real space approach
based on the Dyson equation.

[G=(I-G,V) 1G]
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Treatment of on-site potential

+ After achieving self-consistence including the Coulomb Tall,

the device is subdivided at the point defect location: D l_. :
Y
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+ Calculation of the Green’s functions of the surfaces S, and S.:
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Treatment of on-site potential

* U, is then included using the Dyson equation:

G's (e) - (I -G, (e) U)_lez (e)

I Intra-atomic potential matrix

+ Retarded Green function of the uncoupled system:

Go( ) 2651(6) | 0 H
& O G's, (e)(]
+ Calculation of the current*;
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Results

| nfluence of point defect




Simulation results

+ Electronic subbands: Effect of the Coulombic potential (valley (010))

v Subband profile is affected by the impurity.

v Acceptor impurity increases the channel barrier.
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v Subbands are still independant: justification of the mode-space approach.




Simulation results

+ Evolution the 1st confinement eigenstate (valley (010)):
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v' Highest variations of the eigenstate with centered impurity.

v' Scalar product <?

2 > ~ 0.95 : weak variations.
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Simulation results

+ First subband profile and current characteristics:
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v’ Defect in the corner: weak influence on the subband profile.

v’ Defect free: highest

current.
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v' Centered defect:; lowest current.
v' Defect in the corner: intermediate behavior: current decrease of 50%.
v’ Variation of the subthreshold slope.
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Simulation results

+ Influence of Coulomb potential:
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v' On-site potential defect does not affect the total current.
v Coulombic potential has the most significant impact.
v’ Electrons can be transmitted through the unperturbated neighboring atoms.
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Conclusion

+ Modeling of electron-ion interaction based on the NEGF formalism.
+ Study of the effect the acceptor impurity in terms of physical properties.
+ Centered impurity involves a significant degradation of the current.
+ Not only a shift of the current but rather a subthreshold slope variation.

+ The Coulomb potential has a prevalent rule compared to the on-site
potential of the impurity.

+ Treatment of donor impurities in source and drain.
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