TCAD simulation of statistical variability

Andrew R. Brown

&

The Glasgow Device Modelling Group University of Glasgow

Outline

- Introduction
- Sources of variability and TCAD challenges
 - Random discrete dopants
 - Line edge roughness
 - Poly-silicon gate granularity
 - Metal gate granularity
 - Statistical Reliability
- Examples
- Conclusion

Variability Research in Europe

Modern

- MOdeling and DEsign of Reliable, process variation-aware Nanoelectronic devices, circuits and systems
- 31 partners in 9 European countries

Reality

- Reliable and Variability tolerant System-on-a-chip Design in More-Moore Technologies
- IMEC, STMicroelectronics, ARM, KU Leuven, U. Bologna, U. Glasgow

Trams

- Terascale Reliable Adaptive Memory Systems
- UP Catalunya, Intel, IMEC, U. Glasgow

Mordred

- Modelling of the reliability and degradation of next generation nanoelectronic devices
- Tampere U. of Tech., UCL, U. Glasgow, Vienna Inst. Micro., IMEC, Infineon, GSS, KU Leuven

NanoCMOS (UK)

- Meeting the design challenges of nanoCMOS electronics
- U. Glasgow, U. Manchester, U. Southampton, U. York, U. Edinburgh, NeSC

Glasgow statistical 3D simulation tools

Drift-Diffusion (DD) with quantum corrections.

 Ensemble Monte Carlo (MC) with ab-initio impurity scattering.

Non-Equilibrium Green's Functions (NEGF).

Grid/cluster based simulation technology

Quantum corrections using DG

Simulation and Characterisation of Statistical CMOS Variability and Reliability SISPAD Workshop, Bologna 9/9/2010

How accurate is the DG solution?

DG vs. the Sano approach

DG vs. the Sano approach

10x10 nm DG MOSFET

The mobility dilemma (1) Doping concentration dependent mobility

- The mobility is a statistical transport property.
- It has a meaning for sufficiently large self averaging system.
- No mobility can be assigned to individual dopants.
- Best solution is to use the continuous doping from which random dopants were generated.
- Even with DG corrections the resistance of an atomistic slab is larger compared to continuously doped one due to partial localization.

The mobility dilemma (2) Velocity saturation, field dependence

Potential distribution in a MOSFET with random dopants

Velocity distribution in a MOSFET with single dopant

- □ Field dependent mobility has a meaning in 'adiabatic' conditions.
- The high electric field around single dopant cannot be used in the field dependent mobility model.
- The velocity saturation is associated with dissipative phonon scattering.
- The reduction of velocity around single dopant is associated with Coulomb scattering.

The calibration dilemma

- The shape of the continuous simulation and the average 'atomistic'
 I-V curves are different.
- □ The calibration of continuous TCAD simulations to measurements which are equivalent to average atomistic simulation results in compensations through the mobility models..

Transport (scattering) related variability

The impact of the transport related variability

35 nm MOSFET

LER is notoriously difficult to reduce

Sandia Labs - EUV

Poly-Silicon Grains

Metal gate granularity (MGG)

$$\Phi_{111}(L)>\Phi_{100}(M)>\Phi_{110}(H)$$

Statistical reliability: electrostatics

Simulation and Characterisation of Statistical CMOS Variability and Reliability SISPAD Workshop, Bologna 9/9/2010

Example: 45nm Device Structure and Calibration

Good agreement with measurements

	<i>n</i> -channel	MOSFET	<i>p</i> -channel MOSFET		
	σV_T [mV]	σV_T [mV]	σV_T [mV]	σV_T [mV]	
	$(V_{DS}=0.05 \text{ V})$	$(V_{DS}=1.1 \text{ V})$	$(V_{DS}=0.05 \text{ V})$	(V _{DS} =1.1 V)	
RDD	50	52	51	54	
LER	20	33	13	22	
PSG	30	26	-	-	
Combined	62	69	53	59	
Experimental	62	67	54	57	

Trapped charges (NBTI)

Trapped charges (NBTI)

32nm Metal Gate Granularity

Updated scaling – high-k/metal gate

L_{gate} (nm)	35	25	18
EOT (nm)	1.0	0.9	0.7
Stress liner thickness (nm)	30	22	15
Lateral length (nm)	200	130	100
$V_{dd}\left(\mathbf{V}\right)$	1.0	1.0	1.0

Variability in high-k/metal gate MOSFETs

Variability in high-k/metal gate MOSFETs

SOI and DG variability

32 nm FD SOI

22 nm DG

	32 nm σ	$V_T(mV)$	22nm σ	$V_T(mV)$
	V_{ds} (50mV)	$V_{ds}(1.0V)$	V_{ds} (50mV)	V_{ds} (1.0V)
RDD	5.3	6.1	6.4	8.1
LER	3.3	8.6	5.8	13
Trap (1e11)	11	11	5.1	4.8
Trap (5e11)	24	25	13	12
Trap (1e12)	36	37	18	17
Combined (1e11)	13	15	10	16
Combined (5e11)	25	27	16	19
Combined (1e12)	37	38	20	23

3D NEGF simulator with variability and scattering

Conclusions

- There is a large amount of research being done in Europe on the study of variability and ways to deal with it in circuits and systems
- Underpinning this work are TCAD simulations which quantify the variability at a device level
- The major sources of statistical variability have been highlighted and some of the issues involved in including them in TCAD modelling have been discussed.

