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Increased Reliability Concerns

= An inevitable result of aggressive scaling
— No convenient solution from CMOS technology!

Chemical effects
Mechanical effects

Thermal effects
Temporal degradation (aging)

Static fluctuations

Dynamic electronic signals
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[M. Kole, BMAS 2007]
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Changing Scenario with Thin T

= Hot carrier effect = Bias temperature instability
— NMOS in the saturation region — NBTI for PMOS in the inversion
— Close to the drain mode (weaker PBTI in NMOS)
— Related to the switching — Uniform in the channel
— Happens at the standby
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= Hard oxide breakdown = Soft oxide breakdown
— Sudden |, change, hard failure — Gradual increase of |,
— Multiple oxide charges — More with interface traps
— A stochastic process — Correlated with other aging effects
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Impact on Reliability Analysis

= Atom level: Discrete, intrinsically statistical
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= Device level recovery fime (s)

— Compact models of temporal parameter shift
— Dependence on process variations

= Circuit level
— Statistical interaction with dynamic operations
— In-situ characterization techniques

[H. Reisinger, et al., IRPS 2010]
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NBTI: Static Stress

_Vgs
N +
Gate || H 0 H
—Si S| —S| S| —S| —
Oxide ||
COO0000 —Si Sl—Sl Sl—Sl—

n-Substrate | L
h hhhhhh hhhhhh

AV, = Ala+ o), +Vetf"

B, ( Ej
C—oexp ——
EOJ KT

A—Q expL

= A mixture of trapping/detrapping and
reaction/diffusion, affecting V,, and p
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Correlation with TDDB?
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" Direct tunneling dominates |, in a thin T, device
" Interface charges control both Vy, shift and |, change
* Modeling of such correlation reduces design margin

[J. Hicks, et al., Intel, 2008; S. Tsujikawa, TED 2006]
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Statistical Silicon Validation
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= Only 5-6 model parameters need to be extracted

= Reliability model is scalable with primary process and
design parameters
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Dependence on V,, Variation
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Aging is a linear function of V,

It is negatively correlated with V,
shift, compensating initial process
variations in V,

ES1 2010 SISPAD Variability/Reliability Workshop, Y. Cao -8 -



Dependence on T_, Variation
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= Aging is highly sensitive

to T, variation

— Such an exponential
dependence helps extract
T,, from the aging rate

— Again, aging effect is
negatively correlated
with T, variation

= Aging effect could be
exploited to reduce
process variations

— But the required annealing
time is too long
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Statistics of RO Frequency

100 ROs at 65nm
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Aging of RO Mean and STD
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= The mean shift follows the power law of time, while o

decreases with the stress time (at the same rate)
= ¢o/u stays the same under the stress!
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NBTI: Dynamic Effect

= A unique property of NBTI:
recoverable when V=0

Recovery n e I\D/IEoi?el
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Aging under Dynamic Operations

= Realistic circuit operations are statistical:
— Multiple V44, such as dynamic voltage scaling (DVS)
— Sleep mode (V44 off): long recovery phase, no stress
— Random duty cycle at each node
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Gaps in Reliability Test

= Traditional RO based structure Active,  Sleep

(recovery)

IS incapable to capture: Ve ’ )
— Dynamic operation conditions: TLH I'I_ dd2
duty cycle (fixed at 50% in a RO), ~ <z ol

It d thei 7: total operation period
vorage, an cif sequence n: the active portion

— Sensitivity to the rising/falling edge; Such unsymmetrical stress is
important for today’s high performance synchronous design
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A Generic Test Platform

Pulse A

By-pass pulse C
(for calibration)
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Divider Cycle) 64
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= On-chip clock and stress control:

10% to 90% duty cycle, 680MHz — 1.23 GHz,
control of stress V, and temperature

= Test array: 63 types of data paths

= Time-to-digital converter (TDC):

Detect delay shift, with 2ps resolution

2X10 Probe
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Data Path Array

Atom level: Test array
contains one bypass path
for the calibration and 63
data paths

Three 45nm device types
— Core device

— Analog friendly device

— High-voltage device

Four circuit structures
representing different
sensitivities to NBTI

Fan-out = 1

Fresh pulse

By-pass pulse
(for calibration)

Delay path (INV)

Delayed

CG_ST | Delay path (NOR2)

~ Delay path (PPG) -
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Cyclic TDC Design
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The Vernier ring structure

Read_out clock

= A simple and small cyclic structure for easy integration

= Translates delay difference between two signals into digital output

= Qversampling to average random jitter in test circuits

— 20 times to enhance the resolution to 2ps, corresponding to ~0.5% delay shift
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Duty Cycle Dependence
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= Higher duty cycle leads to longer stress time and more degradation

= Under constant throughput, the degradation is relatively independent
on dynamic sequence of duty cycle
— Aging is approximately linear to duty cycle, between 10-90%
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Dynamic Voltage Scaling

Dynamic voltage scaling scheme
with constant workload

(n: the active fraction)
Case A: Vpp=0.9V n=1

Case B: Vpp=1.3V n=0.628

LR AT

Case C: Vpp=1.3V n=0.628
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Aging is highly sensitive to voltage,

and its dynamic sequence

Current reliability tools are only
able to handle Case A (constant
voltage and duty cycle)

Case B and Case C

H

ATIT (a.u.)

Stress Time (s)
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Dynamic Aging Model
= Cycle-to-cycle model: appropriate boundary
conditions to connect different periods

= Long-term model: direct calculation assuming
averaged design parameters
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[R. Zhen, et al., CICC 2009]
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Summary

Atom level: modeling of the increased variability

Device level: negative correlation with process variations

Circuit level: a generic test platform for statistical circuit
reliability in dynamic operations

System level: hierarchical integration with VLSI design flow
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Bias-temperature
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