

Practical Process Variation Design Environments for Yield Maximization

James Victory, Juan Cordovez

Simulation and Characterization of Statistical CMOS Variability and Reliability Workshop September 9, 2010

- 1 Yield Impact on the Bottom Line
- **2** Overcoming Challenges Common to Statistical/Corner Models
- **3** Flexible Design Environments for Efficient Circuit Design
- 4 Split Lot Treatment: Design for Manufacturing Yield
- 5 Summary

2

- 1 Yield Impact on the Bottom Line
- 2 Overcoming Challenges Common to Statistical/Corner Models
- Flexible Design Environments for Efficient Circuit Design
- 4 Split Lot Treatment: Design for Manufacturing Yield
- 5 Summary

A 65nm GPS SoC Case Study: Yield Improvement Impact on Bottom Line SENTINEL

c technologies

BOM Cost Analysis Die W (mm) effects Die H (mm) mm2 Die Area Total Gross Die/Wafer (300 mm) Estimated Die Cost compounding yield loss Fab Process Yield Probe Yield Probe Cost (2s @7c) Probe Yield Cost Package Cost 85% Mechanical Yield Final RF Test Cost (3s @5c) RF Yield Cost Baseband Yield Final BB Test Cost (2s @6c) **BB Yield Cost** Bake, Pack, Ship Parts Shipped per wafer Total Device Cost

Small Yield Improvement Generates Large** Cost Savings
**Highly dependent on application and market

Goal of Yield Maximization: Reduce Over and Under Design

c technologies

Model overestimates process variation and fails to capture inter-device correlations

- ☐ Designers struggle to meet specification compliance, increasing development cycle times
- ☐ Designers resort to inefficient methods to compensate variation, derating specs, increasing die size, etc...
- ☐ Suboptimal mass production device performance

Model is offset from fab specification means, distributions, & correlations

- Designers unable to simulate actual fab performance, collapsing yield and reliability.
- Nonfunctional Silicon
- Delays in product readiness
- Suboptimal mass production device performance

Comprehensive Yield Maximization

Requires More than Conventional Corner and Statistical Models

Pillars of Design for Yield Maximization

Accurate

- Deploy physical extraction techniques such as BPV, and <u>capture correlation</u>
- Statistical process control data interrogation, understand limitations
- Deploy Fab loop closure to eliminate over and under design

$$\sigma_{\delta EGi}^{2} = \sum_{k} \left(\frac{\partial EGi}{\partial PGk} \right)^{2} \sigma_{\delta PGk}^{2}$$

Flexible

- More than just worst case corners which limit exploration of entire process variation space
- More than just Monte Carlo which is an expensive way to find root causes of design sensitivity
- · Give the designer the power to explore the entire process variation space, effeciently

Accessible

- Designer intuitive implementation in PDK environments
- · Direct links to fab data for real time tracking
- Relevant to all designs including RF, analog, power

- 1 Yield Impact on the Bottom Line
- **Overcoming Challenges Common to Statistical/Corner Models**
- 3 Flexible Design Environments for Efficient Circuit Design
- 4 Split Lot Treatment: Design for Manufacturing Yield
- 5 Summary

Local and Global PCM Variation: The Nanoscale Challenge

- ☐ PCM data is no longer dominated by global *correlated* variation.
- Large local uncorrelated variation is apparent in PCM data in particular for minimum geometries (effects are graded over the geometry range).
- Model extraction based on PCM is complicated by presence of correlated and uncorrelated effects for the same physical parameter.

Total VariationGlobal VariationLocal Variation

Global variation no longer dominates best/worse case corner simulations

Local and Global PCM Variation: How to Capture in Models

- Statistical model generation requires 3 step process
 - 1. Extract local mismatch variation (PL) using BPV from conventional mismatch data (EL)
 - 2. Substract local variation from total PCM variation (EG)
 - 3. Extract global variation (PG)

Local Mismatch

$$\sigma_{\delta ELi}^{2} = \sum_{k} \left(\frac{\partial ELi}{\partial PLk} \right)^{2} \sigma_{\delta PLk}^{2}$$

Overlooked/Hidden Correlations: Tox Case Study

c technologies

- Process variation induces electrical performance correlation across multiple device types
- Certain correlations are often over looked in models such as thin and thick gate oxide, salicide, ILD, and others.
- Accurate modeling achieved through isolation of root uncorrelated physical parameters and mapping into affected device models

Largely Uncorrelated Process Parameters

<u>ToxA</u> and <u>ToxB</u>

ToxA Induces LV and HV FET Tox Correlation

$$\sigma_{ToxA}^{2} = \sigma_{ToxLVpcm}^{2}$$

$$\sigma_{ToxA}^{2} + \sigma_{ToxB}^{2} = \sigma_{ToxHVpcm}^{2}$$

$$\sigma_{ToxB}^{2} = \sigma_{ToxHVpcm}^{2} - \sigma_{ToxA}^{2}$$

- 1 Yield Impact on the Bottom Line
- 2 Overcoming Challenges Common to Statistical/Corner Models
- **3** Flexible Design Environments for Efficient Circuit Design
- 4 Split Lot Treatment: Design for Manufacturing Yield
- 5 Summary

Fab Loop Closure

Flexibly Explore Process Variation Space: Sentinel VSTAT Simulation Environment

VSTAT GUI Example

What is VSTAT?

A <u>flexible</u> corner model environment that enables parametric modulation of critical uncorrelated process parameters <u>continuously</u> and <u>independently</u>

Why is VSTAT beneficial?

- Removes barriers presented by fixed corners and monte carlo statistical models.
- Empowers designers to flexibly and efficiently explore circuit sensitivities across the entire process variation space.
- User defined parameter modulations
- Available as design environment variables for parametric sweeping

Flexibly Explore Process Variation Space: **VSTAT Example**

c technologies

- 1 Yield Impact on the Bottom Line
- 2 Overcoming Challenges Common to Statistical/Corner Models
- 3 Flexible Design Environments for Efficient Circuit Design
- 4 Split Lot Treatment: Design for Manufacturing Yield
- 5 Summary

Overcoming SPLIT Lot Limitations: Sentinel VirtuaLOT*

c technologies

SPLIT Lots

- All conditions realistically cannot be explored.
- ☐ Conditions produce silicon with statistically improbable results, forcing designers to waste time and design performance to "comply".

		Split Parameters (SP)																
	Ox Th	Gate Oxide Thickness (TOX)		Poly Silicen Critical Dimension (CD _{pul})		Active Area Critical Dimension (CD _{AA})		N-type Implant MOSFET Doping (N _{mer})			P-type Implent MOSFET Deping (N _{res)}			Poly Silicen Doping (ارسیا)				
	L	Split Passmater Lovels (III)																
	н	N	L	H	N	L	н	N	L	н	N	L	H	N	L	н	N	L
Split 1		х			х			х			х			х			х	
Split 2			x			x			x			x			x			х
Split 3	x			x			х			x			x			х		
Split 4	x			x					x			x			x			x
Split 5			x		x		x			x			x			x		

N^{SP} produces 729 SPLITs!

VirtuaLOT

- □ Pre-fabrication simulation of SPLIT Lots
- □ Provides insight into circuit sensitivities to determine priority split conditions
- Reduces fabrication of statistically improbable silicon split lots

VirtualLOT PDK/Model Implementation

VirtuaLOT GUI Example

Sentinel VirtuaLOT: Corner Lot Split Conditions							
Process Module	Split Condition	Selection					
? Active	With Dummy Fill	0					
Active	Without Dummy Fill	•					
	POR +1%	0					
Gate Oxide	POR	•					
	POR -1%	0					
	POR +6%	0					
PCH3 Vt	POR	•					
	POR -6%	0					
	POR +6%	0					
? PCH Vt	POR	•					
	POR -6%	0					
	POR +6%	0					
NCH3 Vt	POR	•					
	POR -6%	0					
	POR +6%	0					
? NCH Vt	POR	•					
	POR -6%	0					
	POR -0.01um (F)	0					
Poly CD	POR (N)	•					
	POR +0.01um (S)	0					

POR: Process of Record

Generate VirtuaLOT Models

Map into Process Parameters

Parameters
VLOT_Dnpoly=-0.15
VLOT_Dcd_poly=3.3e-9
VLOT_Dsti=-0.13e-7
VLOT_Dtox=-1.5e-10
VLOT_Dcdaa=-1.1e-9
VLOT_Dnnfet=-0.12
VLOT_Dppfet=-0.12

endsectionVLOT DELTAS SPLIT 1

Map into Model Equations

subckt poly_resistor (P N G) parameters L=10u W=2u

- + tpoly=0.5e-6
- + npoly=1.65e19
- + rend=0.3
- + rho_poly=1/(Q*tpoly*upoly*npoly(1+VLOT_Dnpoly))
- + dw_poly=-1*(cd_poly+VLOT_Dcd_poly)
- + Rpoly=rho_poly*L/(W-dw_poly)*rend/(W-dw_poly)

R1 (P N) resistor r=Rpoly tc1=tc1_poly tc2=tc2_poly ends poly_resistor

VirtualLOT Silicon Validation

Summary

- Understanding improved yield impact on the bottom line, over and under design concepts sheds light on the real prize
- Maximizing yield requires more than just fixed corner and Monte Carlo statistical models which may present barriers to understanding design sensitivity to process variation
- Designers need flexible statistical design platforms that allow them to efficiently design for circuit sensitivity to process variation
- Advanced platforms like VSTAT and VirtuaLOT achieve this goal

Acknowledgments

Grace Semiconductor

Providing portions of statistical data in presentation where noted

Colin McAndrew, Freescale Semiconductor Discussions on Statistical Modeling Techniques

References:

C.C. McAndrew, "Statistical Modeling for Circuit Simulation", Proceedings of the Fourth International Symposium on Quality Electronic Design (ISQED'03)

C.C. McAndrew and Patrick Drenann, "Device Correlation: Modeling using Uncorrelated Parameters, Characterization Using Ratios and Differences", Proc. Workshop on Compact Modeling WCM, 2006

Thank you

For additional information please visit us at

www.sentinel-ic.com